leonardo da vinci


Overview

Leonardo's approach to science was observational: he tried to understand a phenomenon by describing and depicting it in utmost detail and did not emphasise experiments or theoretical explanation. Since he lacked formal education in Latin and mathematics, contemporary scholars mostly ignored Leonardo the scientist, although he did teach himself Latin. In the 1490s he studied mathematics under Luca Pacioli and prepared a series of drawings of regular solids in a skeletal form to be engraved as plates for Pacioli's book Divina proportione, published in 1509. While living in Milan, he studied light from the summit of Monte Rosa. Scientific writings in his notebook on fossils have been considered as influential on early palaeontology.

The content of his journals suggest that he was planning a series of treatises on a variety of subjects. A coherent treatise on anatomy is said to have been observed during a visit by Cardinal Louis d'Aragon's secretary in 1517. Aspects of his work on the studies of anatomy, light and the landscape were assembled for publication by Melzi and eventually published as A Treatise on Painting in France and Italy in 1651 and Germany in 1724, with engravings based upon drawings by the Classical painter Nicolas Poussin. According to Arasse, the treatise, which in France went into 62 editions in fifty years, caused Leonardo to be seen as "the precursor of French academic thought on art."

While Leonardo's experimentation followed scientific methods, a recent and exhaustive analysis of Leonardo as a scientist by Fritjof Capra argues that Leonardo was a fundamentally different kind of scientist from Galileo, Newton and other scientists who followed him in that, as a "Renaissance Man", his theorising and hypothesising integrated the arts and particularly painting

Anatomy & Physiology

Anatomical Sketches Leonardo started his study in the anatomy of the human body under the apprenticeship of Verrocchio, who demanded that his students develop a deep knowledge of the subject. As an artist, he quickly became master of topographic anatomy, drawing many studies of muscles, tendons and other visible anatomical features.

As a successful artist, Leonardo was given permission to dissect human corpses at the Hospital of Santa Maria Nuova in Florence and later at hospitals in Milan and Rome. From 1510 to 1511 he collaborated in his studies with the doctor Marcantonio della Torre. Leonardo made over 240 detailed drawings and wrote about 13,000 words towards a treatise on anatomy. Only a small amount of the material on anatomy was published in Leonardo's Treatise on painting. During the time that Melzi was ordering the material into chapters for publication, they were examined by a number of anatomists and artists, including Vasari, Cellini and Albrecht Dürer, who made a number of drawings from them.

Leonardo's anatomical drawings include many studies of the human skeleton and its parts, and of muscles and sinews. He studied the mechanical functions of the skeleton and the muscular forces that are applied to it in a manner that prefigured the modern science of biomechanics. He drew the heart and vascular system, the sex organs and other internal organs, making one of the first scientific drawings of a fetus in utero. The drawings and notation are far ahead of their time, and if published would undoubtedly have made a major contribution to medical science.

Leonardo also closely observed and recorded the effects of age and of human emotion on the physiology, studying in particular the effects of rage. He drew many figures who had significant facial deformities or signs of illness. Leonardo also studied and drew the anatomy of many animals, dissecting cows, birds, monkeys, bears, and frogs, and comparing in his drawings their anatomical structure with that of humans. He also made a number of studies of horses.

Leonardo's dissections and documentation of muscles, nerves, and vessels helped to describe the physiology and mechanics of movement. He attempted to identify the source of 'emotions' and their expression. He found it difficult to incorporate the prevailing system and theories of bodily humours, but eventually he abandoned these physiological explanations of bodily functions. He made the observations that humours were not located in cerebral spaces or ventricles. He documented that the humours were not contained in the heart or the liver, and that it was the heart that defined the circulatory system. He was the first to define atherosclerosis and liver cirrhosis. He created models of the cerebral ventricles with the use of melted wax and constructed a glass aorta to observe the circulation of blood through the aortic valve by using water and grass seed to watch flow patterns. Vesalius published his work on anatomy and physiology in De humani corporis fabrica in 1543.

Engineering & Inventions

During his lifetime, Leonardo was also valued as an engineer. With the same rational and analytical approach that moved him to represent the human body and to investigate anatomy, Leonardo studied and designed many machines and devices. He drew their “anatomy” with unparalleled mastery, producing the first form of the modern technical drawing, including a perfected "exploded view" technique, to represent internal components. Those studies and projects collected in his codices fill more than 5,000 pages. In a letter of 1482 to the lord of Milan Ludovico il Moro, he wrote that he could create all sorts of machines both for the protection of a city and for siege. When he fled from Milan to Venice in 1499, he found employment as an engineer and devised a system of moveable barricades to protect the city from attack. In 1502, he created a scheme for diverting the flow of the Arno river, a project on which Niccolò Machiavelli also worked. He continued to contemplate the canalization of Lombardy's plains while in Louis XII's company and of the Loire and its tributaries in the company of Francis I. Leonardo's journals include a vast number of inventions, both practical and impractical. They include musical instruments, a mechanical knight, hydraulic pumps, reversible crank mechanisms, finned mortar shells, and a steam cannon.

Flight Machine Sketches Leonardo was fascinated by the phenomenon of flight for much of his life, producing many studies, including Codex on the Flight of Birds (c. 1505), as well as plans for several flying machines, such as a flapping ornithopter and a machine with a helical rotor. A 2003 documentary titled Leonardo's Dream Machines, various designs by Leonardo were interpreted and constructed. Some of those designs proved successful, whilst others fared less well when tested.

Research performed by Marc van den Broek revealed older prototypes for more than 100 inventions that are ascribed to Leonardo. Similarities between Leonardo's illustrations and drawings from the Middle Ages and from Ancient Greece and Rome, the Chinese and Persian Empires, and Egypt suggest that a large portion of Leonardo's inventions had been conceived before his lifetime. Leonardo's innovation was to combine different functions from existing drafts and set them into scenes that illustrated their utility. By reconstituting technical inventions he created something new.

In 1493, Leonardo first stated the ‘laws’ of sliding friction. His inspiration came about in his study of perpetual motion, which he correctly concluded was not possible. His results were never published and the friction laws were not rediscovered until 1699 by Guillaume Amontons. For this contribution, Leonardo was named as the first of the 23 "Men of Tribology" by Duncan Dowson.